

基于人工智能技术的云遥感反演与深对流识别和追踪

张峰

合作者: 李经纬 赵志军 李雯雯 李俊 等

复旦大学 大气与海洋科学系 上海期智研究院

2023年08月11日

目录

云反演背景介绍及科学问题

静止卫星云参数反演

基于反演云产品的深对流识别

云的重要性

云在**全球能量平衡调节**以及**灾害天气预测预警**中起到了 至关重要的作用**,云物理特性**对于**改善气候模式和气象预报效 果**具有重要意义。

全球能量平衡示意图

灾害天气监测

云反演研究进展及科学问题

> 传统的物理算法

 τ : Cloud optical thickness r_e: Cloud effective radius

可见光/短波红外 双光谱方法

(Nakajima et al. 1990; Letu et al. 2020)

> 2019年夜间降水 占此达到50%

反射率差, 亮温差和 云顶温度结合算法

(Zhou et al., 2022)

传统的物理反演方法大多是基于可见光/短 波红外双通道反演的,因此难以得到夜间的 云产品,并且在太阳耀光区无法进行反演

红外分裂窗方法

(Inoue, 1985; Iwabuchi, 2014)

(Wang et al., 2016; Iwabuchi et al., 2016;)

由于黑体原理,传统的红外裂窗法和基 于最优估计红外多通道方法的在光学厚 云(COT>10)的反演中受到限制

云反演研究进展及科学问题

▶ 机器学习方法 (点到点)

神经网络 (Minnis et al., 2016)

利用MODIS多光谱红外通道的辐射估计夜间不透明冰云COT,估计值高达150,相关系数高于69%

K-nearest-neighbor; 支持向量机; 随机森林; 梯度提升决策树; (Min et al., 2020)

利用先进的机器学习算法,结合 H8/AHI和 CALIPSO来获得 CTH 比传统物理算法精度高。

XGBoost (Yang et al., 2022)

利用H8/AHI红外数据, 通过XGBoost算法获得 了东亚昼夜高时空分辨 率的CTT和CTH。

GOES-16: Geostationary Operational Environmental Satellite-R Series;

ABI: Advanced Baseline Imager;

梯度提升回归树 (Lin et al., 2022)

利用GOES-16/ABI观测数据中**反演了日间云底 高度**,以CALIPSO为标签,**RMSE为1.14 km**。

点到点的机器学习算法可以利用热红外辐射在白天和夜间进行 云反演,但会丢失很多周围云的空间结构信息

云反演研究进展及科学问题

> 深度学习方法

深度神经网络

(点到点)

(Li W. et al. 2022)

从H8/AHI**多光谱观测辐射和模拟晴空辐射**中获得全天侯的**云检**测、云相态分类和多层云检测

深度神经网络

(面到点)

(Wang X. et al. 2022)

实现了H8/AHI红外亮温**对东亚地区全天候CTH和冰云COT的 反演,**DNN模型将**冰云COT估计值扩展到200**,对高冰云COT>1的相对偏差约20%

卷积神经网络

(面到面)

(Wang Q. et al. 2022)

利用MODIS热红外辐射**得到了全天候的云检测,CTH,CER和COT产品**在0-50 µm和0-30范围内具有可靠的精度

面到面的深度学习模型可以获取周围云的空间结构信息,但目前只应用在极轨卫星上,无法在某个区域获取连续的云变化

启发

▶ 1. 结合静止卫星和极轨卫星观测优势

> 2. 采用面到面深度学习网络建立关系

目录

云反演背景介绍及科学问题

静止卫星云参数反演

基于反演云产品的深对流识别

静止卫星云参数反演技术路线

◆ 面到面及全天候静止卫星云参数反演方法

深度学习ResUnet模型介绍

➤ ResUnet模型框架: 语义分割网络(Unet)+残差神经网络(Resnet)

◆ 内部残差块的跳跃链接:缓解深度神经网络增加深度带来的梯度消失问题

FY4A/AGRI 成像仪云相态反演

以CALIPSO云相态产品为标准

> 云相态识别混淆矩阵

> 云检测整体准确率

云检测	FY4A-L2	H8-L2	预训练模型	迁移模型
准确率	79.54%	84.57%	82.09%	88.12%

◆ 基于迁移学习模型反演的CLP产品在云相态识别和云检测方面明显优于静止卫星官方二级云产品

FY4A/AGRI 成像仪云特性反演

云特性产品的联合概率密度分布

以MODIS云特性产品为标准

 10^{-1}

 10^{-1}

100

MYD06

RMSE: 16.12

RMSE: 14.62

102

100

MYD06

RMSE: 12.79

MYD06

 10^{-1}

FY4A/AGRI 预训练模型云反演个例展示

➤ 2020年04月26日_UTC_04:00云相态空间分布

FY4A/AGRI 预训练模型云反演个例展示

➤ 2020年04月26日_UTC_04:00云属性空间分布

◆ 空间分布上: 预训练模型与H8-L2具有较好对应关系, 弥补太阳耀光区的云产品缺失

FY4A/AGRI 迁移模型云反演个例展示

▶ 基于迁移模型的AGRI云反演产品

▶ 全圆盘;全天候;高频次;高效率

Zhijun Zhao, Feng Zhang*, et al, 2023, IEEE TGRS 15

Himawari-8/AHI 成像仪云特性反演

> 云特性产品的联合概率密度分布

以MODIS云特性产品为标准

CER 精度评估

COT 精度评估

CTH 精度评估

◆ 迁移模型反演结果的精度高于Himawari-8官方云产品

Himawari-8/AHI 成像仪云特性反演

> 云特性产品的评估

以CALIPSO和Cloudsat主动探 测云产品为标准

CTH (0-18km)	RMSE	MAE
模型白天	1.73	1.10
模型夜间	2.58	1.51
H8 白天	2.48	1.73

COT (0-100)	RMSE	MAE
模型白天	15.34	9.92
模型夜间	16.85	10.81
H8 白天	23.16	11.05

CER (0-60μm)	RMSE	MAE
模型白天	11.18	7.87
模型夜间	12.64	9.12
H8 白天	14.81	10.67

◆ 迁移模型反演结果的精度均高于 Himawari-8官方云产品

Himawari-8/AHI 成像仪云特性反演

▶ 同一时刻下Himawari-8云产品、MODIS云产品以及ResUnet反演结果个例展示

迁移模型云产品的优点:填补夜间、精度高于Himawari-8

Jingwei Li, Feng Zhang*, et al, 2023, IEEE TGRS (under review) 18

目录

云反演背景介绍及科学问题

静止卫星云参数反演

基于反演云产品的深对流识别

> 对流识别和追踪技术路线图

◆ 利用Himawari-8官方云反演产品,改进传统的基于观测亮温的DCS 追踪算法,实现对深对流系统更精准的识别和追踪,并评估基于云微 物理特性的DCS追踪算法的优势;

➤ 深对流 (DCS) 识别

◆ 根据ISCCP云分类标准,使用云顶高度阈值7km来提取高云。再根据云光学厚度阈值23和3.6,将高云进一步划分为深对流云(对流核),卷层云(层状云区),卷云(卷云云砧)。

➤ 深对流 (DCS) 追踪

- (a) 区域生长法中使用的具有10连接点的三维时空域它包括8个空间连接点, 2个时间连接点;
- (b) DCS的投影图,假设DCS的光学厚度从深对流核向云砧边缘逐步递减;
- (c) 迭代使用光学厚度阈值在三维空间内识别追踪DCS。
- (d) DCS识别追踪结果,不同颜色代表不同的DCS。

◆ DCS追踪算法的核心是区域生长法,它能够模拟三维时空内的对流核生长成 DCS的过程

➤ TOOCAN-CLP追踪算法验证

◆ TOOCAN-CLP算法可有效地识 别追踪到内陆地区新生的DCS

◆ TOOCAN-CLP算法探测的深对流 核与降水范围具有更高的一致性

◆ TOOCAN-CLP算法可以消除 局地大气和地表条件的干扰, 直接反应云的状态,因而更适 用于不同地区的不同大气环境

> 不同云分类方法与CALIPSO卫星观测结果的对比

- ◆ 由云产品定义的云类型:
- 1) 能够更有效区分高云(深对流核、云砧)和中低云,这有助于深对流系统的识别。

2) 有效识别高度较低的深对流云

3) 有效区分深对流核和与其相连的云砧

- [1] Wenwen Li, Feng Zhang*, et al., 2020: The semi-diurnal cycle of deep convective systems over Eastern China and its surrounding seas in summer based on an automatic tracking algorithm, *Climate Dynamics*. https://doi.org/10.1007/s00382-020-05474-1.
- [2] Wenwen Li, Feng Zhang, et al., 2021: Cloud detection and classification algorithms for Himawari-8 imager measurements based on deep learning, *IEEE Transactions on Geoscience and Remote Sensing*, 60, 1-17. https://doi.org/10.1109/TGRS.2022.3153129.
- [3] Zhijun Zhao, Feng Zhang*, et al., 2023: Cloud identification and properties retrieval of the Fengyun-4A satellite using a ResUnet model, *IEEE Transactions on Geoscience and Remote Sensing*. https://doi.org/ https://doi.org/10.1109/TGRS.2023.3252023.
- [4] Jingwei Li, Feng Zhang*, et.al., 2023: Transfer-learning-based approach to retrieve the cloud properties using diverse remote sensing datasets, *IEEE Transactions on Geoscience and Remote Sensing*.
- [5] XUAN TONG, Jingwei Li, Feng Zhang*, et.al., 2023:,The deep-learning based fast efficient nighttime retrieval of thermodynamic phase from AHI, *Geophysical research letters*,.