A Core-Shell box model for simulating Viscosity dependent secondary organic Aerosol (CSVA) and its applications

Long Jia (贾龙) and Yongfu Xu (徐永福)
State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China. Contact: Yongfu Xu (xyf@mail.iap.ac.cn)

Model development and applications

1. RH-dependent kinetic nucleation by H$_2$SO$_4$ hydrate and NH$_3$

 Nucleation rates as a function of sulfuric acid vapor concentrations at different RH

2. Identification of SOA composition and particle-phase reactions

 Mass spectra of SOA from toluene

3. Size-dependent hygroscopic growth of salts and SOA

 Different from the thermodynamic models (e.g., E-AIM or AIOMFAC), the aerosol water is kinetically predicted in the CSVA model, which can be easily coupled to gas-particle partitioning and other chemical processes.

4. Influences of SO$_2$ on SOA formation from toluene

 Measured (circles) and modeled (line) particle number and mass concentrations

5. Viscosity-dependent size distribution of SOA

 Our model is successfully able to reproduce the evolution of SOA particle size distribution from a one-peak mode into a two-peak mode.

6. Effect of RH on SOA formation

 When RH increases from 10% to 70%, the measured SOA mass increases by 67%, and the corresponding modelled SOA mass increases by 69%. This demonstrates that the simulated SOA results are in excellent agreement with the experimental results.

Highlights of CSVA

1. An equation is developed to describe the gas-particle mass transport processes
2. All processes are represented by the form of chemical reactions in the model
3. Aerosol components are determined by mass spectra and master chemical mechanism
4. A humidity dependent homogeneous nucleation model by H$_2$SO$_4$-NH$_3$-H$_2$O is developed
5. Evolution of organic particle size distribution is controlled by viscosity

Acknowledgments

This work was supported by the National Key R&D Program of China (2017YFC0210005) and the National Natural Science Foundation of China (Nos. 41875166, 41875163 and 41375129)

Jia L & Xu Y F. A Core-Shell box model for simulating Viscosity dependent secondary organic Aerosol (CSVA) and its applications. Forthcoming in Science of The Total Environment, 2021